
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

Addressing the feasibility of USI-based threads
scheduler on polymorphic computing system
Zhang Zhang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zhang, Zhang, "Addressing the feasibility of USI-based threads scheduler on polymorphic computing system" (2012). Graduate Theses
and Dissertations. 13249.
https://lib.dr.iastate.edu/etd/13249

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F13249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13249?utm_source=lib.dr.iastate.edu%2Fetd%2F13249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Addressing the feasibility of USI-based threads scheduler

on polymorphic computing system

by

Zhang Zhang

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:

Akhilesh Tyagi, Major Professor

Joseph Zambreno

Thomas Daniels

Iowa State University

Ames, Iowa

2013

Copyright c© Zhang Zhang, 2013. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my mother, who raises me along and supports my

study these years.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. INTRODUCTION . 1

1.1 Motivation . 1

1.2 Background . 4

1.2.1 Heterogeneous Computing and Polymorphic Computing 4

1.2.2 The USI-based Scheduling on Polymorphic Architecture 5

1.3 Related Work . 7

1.3.1 The Extended Amdahl’s Law . 7

1.3.2 Performance Model of Heterogeneous CMP 7

1.3.3 Modeling the User Satisfaction Index . 8

1.4 Organization of this Thesis . 9

CHAPTER 2. THEORETICAL ANALYSIS . 10

2.1 A Theoretical Model . 10

2.1.1 Definition of Threads’ Type . 10

2.1.2 The Model of Flow-Mapping . 12

2.1.3 Different Operating Zones . 14

2.1.4 The Queueing Model for Simulation . 15

2.2 USI-based Scheduling . 18

2.2.1 The Proper USI-function . 18

www.manaraa.com

iv

2.2.2 The Influence of Non-linear Function . 19

2.2.3 Procedure for Calculating Polymorphic Decision’s Influence 21

2.2.4 The Greedy Scheduling Algorithm . 23

CHAPTER 3. EXPERIMENT . 25

3.1 Simulation Methodology . 25

3.1.1 The Simulation Platform based on SystemC 25

3.1.2 The Model of Applications and Threads 26

3.1.3 The Design of the Experiments . 28

3.2 The Simulation Results . 29

3.2.1 Simulating Results for Verifying the Model 29

3.2.2 Evaluation of the Greedy Algorithm . 32

CHAPTER 4. CONCLUSIONS AND FUTURE WORK 39

4.1 Conclusions . 39

4.2 Future Work . 39

4.2.1 The asymmetric thread matching model 40

4.2.2 Adding the cost model of reconfiguring 42

BIBLIOGRAPHY . 44

www.manaraa.com

v

LIST OF TABLES

Table 3.1 The Battery Life in Experiment 1(EPR Topology) 30

Table 3.2 The Battery Life in Experiment 1(RT Topology) 30

Table 3.3 The Average Turnaround Time in Experiment 1(EPR Topology) . . . 30

Table 3.4 The Average Turnaround Time in Experiment 1(RT Topology) 31

Table 3.5 The Average Turnaround Time of Applications in Experiment 2(EPR

Topology) . 34

Table 3.6 The Average Turnaround Time of Applications in Experiment 2 (RT

Topology) . 34

Table 3.7 The Average USI in Experiment 2(EPR Topology) 34

Table 3.8 The Average USI in Experiment 2(RT Topology) 35

Table 3.9 The Applications Counts that Overdue in Experiment 2(EPR Topology) 35

Table 3.10 The Applications Counts that Overdue in Experiment 2(RT Topology) 35

www.manaraa.com

vi

LIST OF FIGURES

Figure 1.1 An Example of a Heterogeneous Computing System 5

Figure 2.1 Coverage of Different Computing Types 11

Figure 2.2 The Flow-Mapping Model . 12

Figure 2.3 The Tank Model . 16

Figure 2.4 The Properties of the USI functions . 20

Figure 3.1 The Simulation Platform . 25

Figure 3.2 The structure of EPR and RT . 27

Figure 3.3 The Normalized Battery Life in Experiment 1 32

Figure 3.4 The Normalized Turnaround Time in Experiment 1 33

Figure 3.5 The Normalized Turnaround Time in Experiment 2 36

Figure 3.6 The Average USI for all given applications 37

Figure 3.7 The Counts of Overdue Applications 38

Figure 4.1 The Asymmetric Flow Mapping Model 41

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects during my study at Iowa State University. First and foremost, I would like to

express my thanks to Dr. Akhilesh Tyagi for his guidance, patience and support throughout

my research and the writing of this thesis. His wisdom and insights are the most important

compass of my work. I would also like to thank my committee members for their efforts

and contributions to this work: Dr. Joseph Zambreno and Dr. Thomas Daniels. I would

additionally like to thank Yanan Cao for his help in preparation of the necessary forms of this

thesis.

www.manaraa.com

viii

ABSTRACT

The consistent advances in IC technology result in ever increasing number of transistors.

There is more and more interest attracted on the issue of using these transistors in computing

more efficiently. The CMP (Chip Multi-processors) is predicted to be one of the most promis-

ing solutions for this problem in future. The heterogeneous CMP is supposed to provide more

computing efficiency compared to the homogeneous CMP architecture; but it requires complex

processing art for manufacturing, which makes it less competitive in the old era. Nowadays, the

complicate SOC(System On Chip) manufacturing techniques are pacing fast. This is leading us

inexorably to heterogeneous CMP with diverse computing style resources like general purpose

CPU, GPU, FPGA, and ASIC cores. In the heterogeneous CMP architecture, the generous pur-

pose CPU provides coverage for almost every type of computing, while the non von-Neumann

cores harvest energy and processing time for specific computing. The polymorphic system is

defined as a heterogeneous system that enable a computing thread to be dynamically selected

and mapped to multiple kinds of cores. A polymorphic thread is compiled for multiple mor-

phisms afforded by these diverse cores. The resulting polymorphic computing systems solve

two problems. (1) Polymorphic threads enable more complex, dynamic trade-offs between de-

lay and power consumption. A piecewise cobbling of multiple morphism energy-delay profiles

offers a richer Energy-Delay(ED) profile for the entire application. This in turn helps scale the

proverbial ITRS ”red-brick power wall”. (2) The OS scheduler not only picks a thread to run,

it also chooses its morphism. Previously, the scientists and engineers prefer using the numer-

ical E·T results to evaluate the design trade-offs, which is challenged to not fit on the future

mobile systems design in this thesis. In the mobile systems, whose primary role is ”enhanced

terminals” - user interface to cloud hosted computing backbone, user satisfaction ought to be

the primary goal. We propose a scheduler to target User Satisfaction Index (USI) functions.

In this thesis, we develop a model for a mobile polymorphic embedded system. This model

www.manaraa.com

ix

primarily abstracts the queuing process of the threads in the OS operation. We integrate a

polymorphic scheduler in this model to assess the application design space offered by polymor-

phic computing. We explore several greedy versions of a polymorphic scheduler to improve

the user satisfaction driven QoS. We build a polymorphic system simulation platform based

on SystemC to validate our theoretical analysis of a polymorphic system. We evaluate our

polymorphic scheduler on a variety of application mix with various metrics. We further discuss

the feasibility of USI-based polymorphic scheduler by identifying its strengths and weaknesses

in relation to the application design space based on the simulation results.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

Mobile systems serve as display terminals of the old days. Both energy and power are at

a premium in these portable systems. Maximizing the battery life is the holy grail of perfor-

mance metrics for mobile systems. However, computational demands made on these platforms

are non-trivial. An aggressive Energy-Delay profile based mobile chip-set will exhaust the bat-

tery quickly even when non-delay-critical applications are active. This dictates architecture

level support for energy-aggressive energy-time profiles. But the need for high performance

versus low energy Energy-Delay profile is dynamic and context dependent. Multiple energy-

time profiles are needed. The solution is to include Energy-Delay profile diverse cores in a

heterogeneous multi-core mobile chip-set. These cores include software morphism general pur-

pose CPU (perhaps both scalar and superscalar), FPGA based reconfigurable core, a GPGPU,

and application-specific integrated circuit (ASIC) core. Software for heterogeneous systems

may contain polymorphic threads - threads compiled with multiple morphisms with identical

behavior - such as CPU morphism and FPGA morphism. Such a diverse Energy-Delay profile

cores and threads based system is called a polymorphic computing system. The Energy-Delay

profile of each morphism for the identical behavior prescribed by a thread differs offering newer

flexibility to an application developer.

One can visualize feasible Energy-Delay space for a given application. The upper envelope

is defined by the CPU morphism for each thread. The lower envelope is defined by either ASIC

core ET profile or FPGA core ET profile for all the threads. A more practical lower envelope

may only consider ET profile of the supported morphisms for each thread.

User interaction is tricky since human beings are impatient by nature. This leads to an

www.manaraa.com

2

interesting opportunity for optimization. The classical process/thread scheduling endeavors

to maximize performance or some other explicit physical performance related attribute such

as energy or throughput. However, if the objective is user satisfaction, that too, with mostly

user interface computing, a different optimization objective might be in order. We propose

user satisfaction index (USI) as a function with the following characteristics. It is a saturating

function of classical performance metrics. Making something faster indefinitely does not lead

to increasing user satisfaction. User satisfaction and dis-satisfaction saturate at some point. In

this paper, we develop the USI concept further, and assess systems built with it.

Need for such polymorphic systems is likely to grow based on the following trends. We can

foresee that the computation throughput required by the mobile applications in the future will

keep increasing [16]. The major design tradeoffs have already shifted from the traditional speed

versus area to speed versus energy [8] in the current embedded CPU design. This trend will

dominate in the near future. The heterogeneous and homogeneous chip-multi-processors (CMP-

s) are two of the candidates proposed for solving the problem of balancing energy consumption

and processing speed [8]. While the hardware techniques for attaining a single Energy-Delay

profile are well developed and their potential improvements have already been assessed in the

literature such as [8, 11], the software techniques are still under-explored and under-utilized.

The use of OS and application architecture to patch together a desirable Energy-Delay profile

from many provided by diverse hardware cores has also not been explored. We believe that the

software solutions, like smarter polymorphic scheduler [14], tailored compiler for reconfigurable

computing [4] or even specialized programming language [7] will further enhance the user ex-

perience in the next-generation mobile computing system. Our research in this paper is mainly

about building a novel model for a polymorphic scheduler for an embedded CMP architecture

and the potential performance improvements achievable from polymorphic computing.

Current Operating Systems (OSs) on mobile device like Android and iOS inherit many fea-

tures from desktop computing era. Android is based on Linux which incorporates the following

two major schedulers: (1) Completely Fair Scheduler (CFS) and (2) BFS [24]. According

to [24], BFS is better for interactive tasks than CFS while the CFS outperforms the BFS

for batch processing. Besides, CFS is especially suitable for multi-cores systems with large

www.manaraa.com

3

number of cores, like 1024 cores. We should notice that both of these two schedulers follow

the throughput focus of desktop computing. Neither of them considers the energy efficiency

issue. The main-stream Android OS adopts the O(1) scheduler. It adds some Real-Time (RT)

scheduling solutions for certain tasks like video and audio applications. Bower et al. [3] have

already demonstrated that the embedded processors with heterogeneous cores provide margins

for the scheduler to improve the energy efficiency to prolong the battery life. The current

scheduling techniques ignore these axes of application design space. They do not fit future

mobile platforms well.

Our previous work [14] has presented a novel threads scheduler optimizing an USI based

objective function. This scheduler picks a morphism for each scheduled thread as well. The

overall goal is to maximize the USI (user satisfaction) within the resource constraints. This

polymorphic scheduler is effective at USI optimization which indirectly balances the tradeoff

between speed and energy. But there still are many unanswered questions about scheduling in

a mobile, polymorphic heterogeneous computing system. (1) Is there a tight theoretical upper

bound on the additional performance gain offered by polymorphic computing? (2) What

kind of space - application mix and characteristics - is ideal or best terrain for polymorphic

computing? Does polymorphic computing offer an advantage for the typical mobile embedded

environments? (3) What kind of function should we adopt to model the user satisfaction and

how to evaluate the USI-based scheduling? (4) Last but not least, does the USI-based scheduler

really exploit the potential of polymorphic computing? To address these questions, (1) we have

built a queuing model for a theoretical analysis of polymorphic systems and (2) we have built a

System-C [10] simulator for simulating a heterogeneous, polymorphic computing system at an

abstract level. We present different test scenarios and workloads to demonstrate the validity of

our theory. We develop a model of traditional scheduling approach for a polymorphic computing

platform as the baseline for evaluating the USI-based scheduler.

www.manaraa.com

4

1.2 Background

1.2.1 Heterogeneous Computing and Polymorphic Computing

An example of a heterogeneous computing system is shown in Figure 1.1. There are various

kinds of computation resources available: general-purpose CPU cores, FPGA cores, GPU cores

and ASIC cores. The number and size (parametrization) of various computing cores/resources

should be properly calibrated. Once chip is fabricated, these parameters and characteristics

become immutable. Figure 1.1 includes routers and I/O controllers. The network-on-chip

(NoC) is needed to make the computing cores virtual for a dynamic scheduling environment.

I/O controller cores coordinate the data/instructions flows between the computing micro-cores

and the memory. Note from Figure 1.1 that this system is based on the mesh network on

chip (NoC) architecture[15]. A heterogeneous computing system can adopt any other NoC

architecture, such as star, ring, or other architectures [19]. The NoC connection architecture

would mainly affect the communication efficiency between the cores. We will not focus on

this topic in our work and assume the communication channels between the cores to be ideal

channels. In current practical heterogeneous computing systems, the software threads are

mainly mapped to computation resources statically. The FFT computing will always be mapped

to the FFT cores, even if the FFT cores are all occupied and threads must wait. Chung [6]

argues for static mapping claiming that mapping computation to unsuitable resources will waste

energy and prolong the processing time by one or two orders of magnitude. Another advantage

of static mapping scheme is that it saves storage space compared to a dynamic mapping scheme.

In order to support mapping one thread to two or more different architectures, we need to double

or triple the storage resources to store different software images. This is assuming we do not

deploy other software solutions that reuse the same software image. In architecturally diverse

cores, sharing of the same binary image gets more and more difficult and challenging. We will

call a heterogeneous computing system a polymorphic computing system if this system can

map a thread to multiple cores with diverse architecture.

www.manaraa.com

5

C: CPU
A: ASIC
F: FPGA
G: GPU

R: Router
I/O

I/O

R R R

R R

R

R

R

R

R R R

R

R

C C

C

C A

A

AF

F G G

F

Figure 1.1 An Example of a Heterogeneous Computing System

1.2.2 The USI-based Scheduling on Polymorphic Architecture

In the preceding discussion, fixed static mapping of threads to cores or core types has

the advantage of minimum energy and processing time, which favors the user satisfaction.

This assumes that the static mapping is to the single core type with the minimum energy

and delay. But this scheme ignores one important component of turnaround time which will

greatly affect the user’s feeling - the waiting time. The waiting time of each thread will increase

significantly if many same type threads wait in the single core type ready queue. The scenario

that many similar threads congest a single core type waiting queue is not rare in real software.

Real program do not distribute their threads across all core type queues uniformly which

would be the ideal (theoretical) model. Even a distribution of threads across multiple core

type queues derived from some benchmark application suite does not/may not match the

www.manaraa.com

6

distribution observed in real workloads. A computing system designed to be balanced with

respect to benchmark workloads will fail to meet the timing and energy constraints under

specific scenarios. A dynamic adaptive thread to core mapping overcomes such issues. One

such greedy heuristic is when threads are adaptively moved to empty or low-occupancy queues.

The scheduler sacrifices the processing time and energy for a shorter waiting time.

How should such a dynamic scheduling policy be evaluated? Decision to move a thread has

iterative affects on waiting times of many other threads. Invariably, dynamic thread movement

worsens Energy-Delay profile of the thread. A thread waiting in the FPGA core type queue,

dynamically moved to CPU core type queue will have 3 times worse energy and 3 times higher

time resulting in 9 times worse Energy-Delay profile. This means extra processing delay due to

worse Energy-Delay profile; hence the expected waiting time savings for all the current threads

waiting in the queue must be higher than the extra processing delay to justify the dynamic

thread move. Otherwise it will not bring any benefits. If dynamic change in one thread’s

morphism will make turnaround time for all the current waiting threads shorter, then how

to quantify the trade-off between this decision’s extra energy consumption with the overall

delay’s reduction is a tricky problem. Our method for this is to consider the effect on USI

Index from both the reduced delay and wasted energy. If a thread is waiting for a while but is

not urgent (not on critical path) and the current battery level is low, then moving it to another

morphism, which reduces the waiting time for this thread and other threads behind it in the

queue, still may not be a wise decision. This is because any additional energy consumption in

a low battery state may lead to significant degradation of USI. With a high battery level, the

user may not focus on the battery at all and may prefer the shortest turnaround time. In such

a system state, reduction in the waiting time for each thread may improve the USI enough

to offset the USI degradation due to extra energy consumption in the worse Energy-Delay

profile of the new morphism. We weight energy and delay with different parameters within the

USI equation/model. Such a USI driven technique has potential to achieve an elegant balance

between speed and energy based on the user satisfaction. This may lead to a new scheduling

policy paradigm.

www.manaraa.com

7

1.3 Related Work

1.3.1 The Extended Amdahl’s Law

There are several papers discussing the extended Amdahl’s laws for the homogeneous and

heterogeneous computing systems. Hill & Marty [13] discuss a series of mathematical models

based on the Amdahl’s Law and Pollack’s rules [2]. Symmetric CMP, asymmetric CMP and

dynamic CMP models are analyzed. However, only the traditional von-Neumann cores are

considered. The modeled performance metric is still the classical speed-up. Cassidy and An-

dreou [5] further extended the Amdahl’s Law to include energy in its objective function. The

objective function used in [5] takes weighted average of delay and energy with an arbitrary

selection of weights. Paul and Meyer [20] revisit the Amdahl’s law for heterogeneous CMPs.

Their main lesson is that un-conventional computing resources, like DSP and ASIC will provide

additional speed-up for the overall system.

Moncrieff et al. [17] revisited the Amdahl Law for the heterogeneous computing platform

with another approach. The authors calculated out several scenarios using numbers derived

from the numerical model based on the revisited Amdahl law. A positive evaluation of the

heterogeneous architectures is given based on the numerical results. All these results have two

common features; one is that they all use simple performance metrics to evaluate the system,

like processing throughput, or the average energy consumption per unit computation. The

other common feature is that they only consider static mapping of the tasks or threads to

the computation resources, and thus ignore the potential of dynamic resource allocation for

applications by the OS.

1.3.2 Performance Model of Heterogeneous CMP

The current IC technology enables us to fabricate cores with diverse computation architec-

ture (CPU, FPGA, GPGPU, and ASIC units) into one chip, known as heterogeneous CMP.

Many studies have been conducted to determine the computational performance of each com-

ponent of the CMP within the heterogeneous architecture. Chung et al. [6] presents the

comparative relationship between the conventional computational resources, the general pur-

www.manaraa.com

8

pose CPU and unconventional cores (u-cores) like FPGA, GPU, and ASIC. Chung [6] estimates

the speed advantage of FPGA over a CPU to be a factor of three on average which includes

the reconfiguration time over some average temporal locality of behaviors. The FPGA core

also has a factor of three advantage in power over a unit CPU core (a MIPS like scalar core).

This means the energy advantage of FPGA core is a factor of 9 over a scalar CPU core. Sim-

ilarly, Chung’s simulation results indicate the ASIC core’s energy advantage to be a factor of

100 over a CPU core. Although Chung’s paper establishes the FPGA core’s speed and energy

advantage over CPU, DeHon’s paper [9] presents the strong and weak points for both FPGA

and CPU based on computational density metric. It points out that Chung’s conclusions are

not universal for all scenarios. DeHon shows that FPGA can outperform the CPU for special

tasks that exhibit control parallelism. The explicit control of FPGA model wastes energy and

reduces the system throughput for inherently sequential computation, like vector arithmetic

add. Combining the results from [6, 9], we can generally model and tag the tasks/applications

and threads to be CPU or FPGA type. Such a model can also determine the most suitable

computation resources. This model can be applied with proper numerical parameters within a

simulating environment.

1.3.3 Modeling the User Satisfaction Index

Shye et al. [22] presents a psychology experiment to explore the relationship between a

user’s satisfaction and computing system’s performance metrics-speed. In this preliminary

research, results revealed that the user’s satisfaction of a service may not be linear in time

such as frames per second (fps). Many other functions like step function, staircase function

and constant function are possible. These results match our common sense. Imagine a video

game application. If the processor provides a service at 20 fps, then the user will experience lag

leading to dis-satisfaction. A service at 60 fps will be fast and satisfying enough for all users. It

is expected that higher computing performance throughput requires higher energy. Satisfaction

as a human sentiment tends to saturate. The service with 100 fps does not significantly alter a

user’s satisfaction compared with 60 fps service. This results in the additional energy resources

(compared with the 60 fps service) wasted with no appreciable gain the main system metric of

www.manaraa.com

9

user satisfaction. In an embedded game system powered by battery, this waste will reduce the

battery life, which may lead to additional user dis-satisfaction. In fact, the user satisfaction

seems to depend on the battery level state. Base on this intuitive idea, our previous work [14]

proposed an USI-based scheduler to achieve better balance of speed and energy. The sigmoid

function [18] for modeling user satisfaction was shown to be a viable approach. The sigmoid

function’s efficiency at modeling the variance of user-satisfaction [23, 26] was further examined.

In our previous work, the scheduler’s objective function focuses on the marginal USI gain per

unit of energy. In this paper, we will further explore other possible forms and variations for

user satisfaction model. We also argue that quadratic-form USI functions are well-suited for

modeling delay based user satisfaction.

1.4 Organization of this Thesis

The rest of this thesis is organized as follows. The Chapter 2 presents our theoretical analysis

of the polymorphic computing system. A basic queuing model and its extension for simulation

are presented in the Chapter 2.1. A primitive theoretical analysis based on this model is

also presented in this chapter. Chapter 2.2 discusses the USI functions and presents a greedy

USI-based polymorphic scheduling algorithm. The simulation methodology and experimental

results are demonstrated in Chapter 3. The Chapter 3.1 further introduces the details of the

model and feature of the testbench. The Chapter 3.2 presents the numerical results in tables

and histograms. Implications of the primary experiments’ results are also discussed in this

chapter. Chapter 4 offers our final conclusions. And we also give our opinions about this

research’s future topic in the Chapter 4.

www.manaraa.com

10

CHAPTER 2. THEORETICAL ANALYSIS

2.1 A Theoretical Model

The OS scheduling is a classic queueing problem, and we can apply the well developed

queueing theory to designing of the traditional OS scheduler. But there are several new features

appear in the scheduler of polymorphic computing, thus we need new model to study the

scheduling problem on polymorphic system. Firstly, the scheduler not only chooses the order

of threads’ execution , but also chooses each thread’s type of morphism. This involves trade-

off of processing time and battery consumption, which is not modeled in the traditional OS

queueing theory. Secondly, the optimization targets of the scheduling algorithm shift from

traditional metrics like queues’ length, average waiting time/turnaround time, or cores’ load

balance to the new USI index. We introduce the USI-function, which is a non-linear function

of delay and energy. Thirdly, introducing the model of battery means that the system is not

a time-invariable system. Then the old random process analysis method like the Markov-

Chain approach won’t fit for this model. Due to the reasons listed above, we build our model

embedded with the new features of the polymorphic computing system. We should notice that

since the model is based on a time-variable system, little analytical results can be obtained

from this model, and we have to mainly rely on the numerical calculation based simulation to

study the scheduling on polymorphic computing.

2.1.1 Definition of Threads’ Type

In the original Amdahl’s Law, the computing workloads are modeled with two characteris-

tics: ”the portion that can be improved” and the ”portion that cannot be improved”. Amdahl

law points out that the “un-improvable portion” would be the bottleneck for improving the sys-

www.manaraa.com

11

tem’s overall performance. In multi-core systems, an application can be executed on multiple

cores in parallel as the ”improvable portion”. In heterogeneous computing platforms, we will

change this definition because not every kind of computing can be mapped to all cores. CPU

and FPGA core types can host almost any kind of computing thread. But DeHon’s paper[9]

indicates that some types of computing (like vector add) should not be mapped to FPGA tiles

when vector length (indicating degree of sequentiality) is long. From their results, we can as-

sert that CPU cores can host every type of computing; while the FPGA cores can host a large

fraction of computing threads; leaving some computing only to the CPU cores. Similarly, we

can assert that GPU cores can host some specific data-parallel tasks, and the ASIC can only

be used for a small fraction of computing threads. In our model of heterogeneous computing

systems, the computing will be separated into different types. Each type accounts for fraction

f1, f2, . . . , fn of the total threads for the core type 1, 2, . . . , n respectively. The Venn diagram

in Figure 2.1 demonstrates the coverage of different different computing types.

CPU coverage: all
kinds of threads

GPU: Some kinds

ASIC:
Specific

task

FGPA: most kinds

Figure 2.1 Coverage of Different Computing Types

www.manaraa.com

12

2.1.2 The Model of Flow-Mapping

We propose a simple queuing model for abstracting the problem of thread mapping and

scheduling in a heterogeneous computing platform. In this model, the waiting queue (which

is common among different OSs) is modeled as “water tank”; the threads are generated by

generators which are equivalent to the water flow’s source in the model; and the computing

resources are modeled as the water flow’s drains. The mapping procedure controlled by the

scheduler (modeled as a water valve) is the “flow” (Figure 2.2). Figure 2.2 (a) presents the

scheduler abstraction. In this model, we assume that the scheduler knows the exact generation

rate of different thread types. We also assume there is no waiting queue for threads. We will

work out a formula to indicate the scenarios that harvest additional USI through polymorphic

computing based morphism control with scheduler. Figure 2.2 (b) presents the more refined

simulation model of the scheduler abstraction in Figure 2.2 (a). In real practical OSs, the

scheduler will not get accurate information on how many threads of various types will arrive

in the future. We need some queues to hold the waiting threads. In Figure 2.2 (b) model, we

assume that the scheduler cannot know the exact incoming rate, but can observe the height of

the tanks to infer the generation rates. Some practical formulas using this simulation model

are also deduced.

b

GCPU:
P1

a

Type1
incoming
rate: G1 S

FPGA:
P2

cS

Type2
incoming
rate: G2

(a)

S

W
aitin

g
Q

u
eu

e 1

Type1
incoming
rate: G1

S

W
aitin

g
Q

u
eu

e 2

Type2
incoming
rate: G2

GCPU:
P1

FPGA:
P2

a

b

c

(b)

S

W
aitin

g
Q

u
eu

e 1

Type1
incoming

rate:
G1^=P1

S

W
aitin

g
Q

u
eu

e 2

Type2
incoming

rate:
G2^=P2

GCPU:
P1

FPGA:
P2

a

c

(c)

Figure 2.2 The Flow-Mapping Model

Figure 2.2 (c) presents the static design of a polymorphic computing system. We define

the expected generation rates of source (generator) 1, 2 as Ĝ1, Ĝ2 respectively. The maximum

www.manaraa.com

13

processing throughput of the CPU cores (over all CPU cores) and FPGA tiles (over all FPGA

cores) are defined as P1, P2 respectively. In the static design of the system, the optimal solution

is Ĝ1 = P1 and Ĝ2 = P2. Under this design, static b flow (from Type-2 to Type-1) should not

exist. Chung [6] concludes that a static b flow from Type-2 to Type-1 morphism will waste power

by leaving the better Energy-Delay profile of Type-2 on the table and introduce extra delay to

both queues. During system chip design, the computing architecture type resources (Type-1

and 2 in this example) should be set in the ratio of expected application mix of the two types so

as to eliminate the static b flow. A dynamic b flow is necessary only when Type-a (Type-1 thread

to Type-1 CPU core) and Type-c flows (Type-2 thread to Type-2 FPGA core) are not balanced

(generation rate of that type does not match the processing rate). We define the instantaneous

generation rates of source of Type-1,2 as G1 = Ĝ1 · λ1, G2 = Ĝ2 · λ2 respectively. The λ1 and

λ2 are the out of balance coefficients of the each source type. In classical queuing models, the

source generates the threads at time intervals specified by a random distribution, like Poisson

distribution or Normal distribution. But this generalized mathematical model is far from real

scenarios. In real scenarios, there is a significant probability that during a long period of time,

a specific thread type generation rate is extremely high or low. Here we use the “unbalance

coefficient” (out of balance) to model the transient nature of the generation rate. The unbalance

coefficients are from the application characteristics. In the theoretical model of Figure 2.2 (a),

the flows a and b, are two thread flows mapped by the scheduler. Due to type restrictions,

the threads generated by generator-1 cannot be mapped to an FPGA core, but the threads of

Type-2 can be mapped to both CPU and FPGA cores. The transient variations make the static

resource allocation during the design of a polymorphic system difficult. Let λ1max and λ2max

be the maximum transient (unbalance) variation observed in the generation rate of Type-1 and

Type-2 threads. If we are willing to allocate redundant resources that will idle frequently, we

would set (design for) P1 = Ĝ1 ·λ1max, P2 = Ĝ2 ·λ2max at the chip design stage. This setting is

impractical in an embedded system. In an embedded computing platform, the area constraints,

power constraints, bandwidth constraints, and other constraints are tight. Hence, designing

an embedded system with computing resources to match the maximum variation in threads’

transient generation rate is next to impossible. In this paper, we would assume that G > P

www.manaraa.com

14

only for very short periods. When the dynamic G is higher than static P for long periods,

the buffers of the computing system will overflow, and some feedback scheme would throttle

the threads generation rate. Consider a user with a mobile device like iPad. If the device

freezes, becomes non-responsive due to overwhelmed resources, the users cease to generate new

activity. The user serves as a negative feedback loop. Modeling this feedback is hard both

in mathematical analysis and for numerical simulation. Hence we will assume that maximum

dynamic G ≤ P .

2.1.3 Different Operating Zones

In the preceding discussion, we have defined the basic elements of the queuing model. One

key component that remains un-discussed in this model is the scheduler, the valve of the water

flow paths. In the model presented in Figure 2.2 (a), we assume that the scheduler knows the

exact thread generation rates of each type. The schedulers with different scheduling policy will

adjust the valve under different scenarios. The speed-oriental scheduler, like common Android

scheduler, would issue as many threads as possible to maximize the throughput. It improves the

overall average delay for the applications. This kind of scheduler would keep b-flow open/going

as long as λ2 > λ1. This scheduler would stop increasing b flow only when (a+ b)/c = P1/P2.

Here, a, b, and c denote the task flow rate through links a, b, and c respectively. On the other

hand, an energy-focused scheduler would likely shut down the b flow. This is because mapping

Type-2 threads to FPGA cores will always save energy. This kind of schedulers will ignore

the extra waiting time of Type-2 threads with the primary focus on prolonging the battery

life. The USI-function based scheduler would adjust the b flow between the speed scheduler

and power scheduler listed above. Since the energy-scheduler and speed-scheduler define the

boundaries of the USI-balanced scheduler, we can determine the USI-scheduler’s flow b’s viable

zone, which indicates the viable operating zone for the USI-based scheduler. The formula(2.1)

defines b’s boundary conditions:
a = Ĝ1 · λ1, b+ c = Ĝ2 · λ2;

a+ b < P1; c < P2;

(a+ b)/P1 < c/P2;

(2.1)

www.manaraa.com

15

By solving these boundary conditions above, we can get the viable operating zone for b:

0 < b <
P1 · Ĝ2 · λ2 − P2 · Ĝ1 · λ1

P1 + P2
(2.2)

Equation 2.2 indicates that the USI-based scheduler’s ability to find a viable zone strongly

depends on the flow source generation rate and other characteristics. If the work loads’ param-

eters satisfy the condition P1 · Ĝ2 · λ2 < P2 · Ĝ1 · λ1, then the constrained USI-based scheduler

cannot adjust the b flow at all. On the other hand, if P1 · Ĝ2 · λ2 >> P2 · Ĝ1 · λ1, it gives

the USI-scheduler a large operating space to achieve the dynamic balance between the battery

life and processing speed. The scheduler can set the b flow within a large operating interval.

This interval defines the working operating zone for polymorphic computing. We note that if

P1 · Ĝ2 · λ2 < P2 · Ĝ1 · λ1, then any polymorphic morphism decision will introduce both extra

delay and extra energy. This leaves zero operating room for polymorphic computing. Under

this condition, we should just use the fixed-morphism approach to harvest the potential of

heterogeneous computing architecture.

2.1.4 The Queueing Model for Simulation

Section 2.1.3 demonstrates the theoretical operating zone of the USI-based scheduler and

polymorphic computing. But this model has two flaws in practice: (1) a key model parameter,

the unbalance coefficients λ are difficult to estimate and utilize for schedulers, (2) it does

not model the waiting ready queue which is common in most OSs. The scheduler’s decision

should be based on a perceivable variable estimate of the work loads. There are no techniques

for scheduler to detect the sudden changes in the threads’ generation rates within short time

windows (of the order of the OS scheduling period) in a real OS. So we extend the previous

model by adding the “water tank” to model waiting queue, and using the height of water to

infer the underlying parameters: λ. The expected waiting time of each thread is linear in its

height (position) in the tank. The unbalances of the workloads can be observed by detecting

the sudden changes in the height of the tank (waiting queue’s length). Figure 2.2 (b) presents

the relationship between the basic elements in the practical “tank” model. The scheduler can

predict the expected delay of each thread based on its position in the queue, and then decide

www.manaraa.com

16

the optimal size of valve (the dispatch rate of threads to achieve the maximum USI for the two

queues). Instead of watching λ1, λ2, a real scheduler should watch the tank heights h1, h2, and

change the scheduling decision and policy when sudden changes to h occur.

Using the tank model, we can obtain the general turnaround time change over all threads in

the waiting queues in response to morphism change for one thread. Figure 2.3 demonstrates the

effect of polymorphic computing on the queues. A large number (h2) of threads wait at Queue-

2 while a small number (h1) of threads are waiting at Queue-1. We assume that all threads

within a queue are already sorted according to their priority. A thread with low priority has no

chance to execute at the corresponding computing core before all threads with higher priority

in the same queue do.

T2(i+2)
T2(i+1)

T2(i)

T2(0)

Th
e

Sc
h

ed
u

lin
g

p
ri

o
ri

ty

T1(2)
T1(1)
T1(0)

V

V

V

T1(h1)

Waiting
Queue #1

Waiting
Queue #2

T2(h2)

CPU

FPGA

c

b

a

Flow b will
compete with

flow a,
introduce

extra delay to
Queue #1

All threads behind T2(i) need
less waiting time for the FPGA

Figure 2.3 The Tank Model

Under the scenario that Type-2 threads’ generation rate is higher than Type-1’s rate, the

CPU cores will have more vacancy compared with the FPGA tiles. Since there are many

threads waiting in Queue-2, we can reduce the load on Queue-2 by utilizing the free CPU

www.manaraa.com

17

cores. If we choose the thread Ti in Queue-2 and issue it to CPU cores immediately, then all

the threads behind it in the Queue-2 (Ti+1, Ti+2, ..., Tn) might be dispatched a little earlier.

We should notice that the reduced time benefits are not guaranteed for every thread behind Ti

because the threads’ waiting time depends on many factors like inter-thread dependency and

the valve’s size change (scheduling decision). If the scheduler adopts a dynamic priority policy

instead of static priority policy, then the order in the queue will change cycle by cycle. In such

a case, the expected waiting time prediction is inaccurate. The speed benefits we discuss here

are merely a heuristic guess of benefits. We should also note that threads in Queue-1 will suffer

extra delay if we map Ti to CPU cores. Here we assume that there are n1 same CPU cores and

n2 same FPGA cores in the system. We will estimate such decision’s effect in the following

equation:

For the thread Ti, if it continues to wait in Queue-2, its total life time is:

Texecute + Twait =
CPL2

P2
+
i · ˆCPL2

n2 · P2
(2.3)

Here CPL (Computation Processing Length) captures the average computation needs of a

thread in the units P ’s processing rate is specified. We assume that all the threads have the

same computation needs CPL for a simplified model. CPL captures instantaneous value and

ˆCPL captures the mean of CPL based on some random distribution.

If we now issue thread Ti to CPU, its total life time is:

Texecute + Twait =
CPL2

P1
+ 0 (2.4)

Each thread behind thread Ti will benefit by not having to wait on Ti, so the net benefit to

delay in Queue 2 is:

(h2 − i) · CPL2

n2 · P2
(2.5)

However, all the threads in Queue 1 will suffer additional waiting time:

h1 ·
CPL2

n1 · P1
(2.6)

www.manaraa.com

18

If we assume that the waiting queues 1, 2 are stable in their thread membership, then we can

claim that the overall delay of all threads will be reduced if:

CPL2

P2
+
i · ˆCPL2

n2 · P2
>
CPL2

P1
− (h2 − i) · CPL2

n2 · P2
+ h1 ·

CPL2

n1 · P1
(2.7)

Solving Equation 2.7, we get:

n1P1h2 ˆCPL2 + n2n1P1CPL2 > n2n1P2CPL2 + n2P2h1CPL2 (2.8)

If we assume that ˆCPL2 = CPL2, then we get a simplified version:

n1P1h2 + n2n1P1 > n2n1P2 + n2P2h1 (2.9)

We should note that Equation 2.9 indicates that no specific choice for Ti maximizes the delay

improvement. This is because we have assumed ˆCPL2 = CPL2. The polymorphic computing-

thread movement across types - brings speed benefits under certain steady-state system con-

ditions specified in Equation 2.9. This is contradictory to the traditional expectation that the

maximum throughput will bring overall speed improvement for the system [25, 21]. If we apply

normal scheduler whose goal is to maximize utilization of computing resources by minimizing

the cores’ idle time, we will introduce extra delay over all threads in a polymorphic computing

system under certain conditions.

2.2 USI-based Scheduling

2.2.1 The Proper USI-function

In our previous work [14], we use the sigmoid function to model user satisfaction as a

function of processing throughput of the system. In this section, we will discuss the essential

features and characteristics of USI functions. We derive one simple USI function for our simu-

lations. Due to lack of psychological experimental data, we do not have any empirical proof to

support our arguments about user satisfaction dependence on system throughput and battery

level. We assume that a normal user would favor speed when battery level is high. Users favor

energy over speed when battery level is low. We use a simple linear function to model this

relationship:

∆USI/∆T ∼ Battery Level/Maximum Battery Level (2.10)

www.manaraa.com

19

In order to simplify our simulations, we do not adopt the sigmoid function from [22]. Instead,

we assume that the user satisfaction is linear in time:

∆USI/∆T ∼ Turnaround T ime/Reference T ime (2.11)

With this USI model, the application which has longer turnaround time will suffer larger USI

loss than the application with shorter turnaround time even for the same marginal time penalty

(or saving). [(T1 + ∆T)/Tref] > [(T2 + ∆T)/Tref] for T1 > T2. This property does not hold

for other USI functions, like a sigmoid function, where ∆USI does not increase linearly with

the turnaround time. Due to saturation of USI function with high T , some threads that have

already waited for long time will see their marginal USI degradation close to 0. Hence they may

further suffer by waiting even longer (possibly indefinitely). This trend will make the system

unstable and generate some unreasonable results. Some threads will experience extremely long

waiting time. Many functions possess the property/characteristics specified in Equations 2.10

and 2.11. We will use a very simple one in the rest of this paper:

USIapps = f(Tapps, Bc) = 1 −
(
Tapps
Tref

)2

·
(
Bc

Bref

)
(2.12)

The USI function in Equation 2.12 calculates each application’s USI under a specific battery

level. Tapps is the turnaround time of the application; Tref is the reference time for normal-

ization. Bc is the current battery level; and Bi is the full/maximum (reference) battery level.

This function is the simplest quadratic form that matches the properties in Equations 2.10 and

2.11.

2.2.2 The Influence of Non-linear Function

As the function in Equation 2.9 indicates, the choice of thread Ti to issue to Type-1 CPU

morphism from the overloaded queue will not affect the overall improvement of delay. This

claim is based on the assumption that generally shorter overall turnaround time of threads will

lead to shorter overall turnaround time for the application. But this rule will not hold if we

change the evaluation metric from delay to the overall USI of applications. We should note

that if we change the evaluation metric from a function linear in time to a quadratic function

www.manaraa.com

20

of time, the same ∆T improvement results in different USI improvement based on the current

USI. The slope of a quadratic function contains a T term. Hence the polymorphic scheduling

decisions are different. Figure 2.4 demonstrates the influence of a quadratic USI function.

Turnaround Time

U
se

r
Sa

ti
sf

ac
to

ry
 In

d
ex

∆USI of all threads
behind Ti in the

queue 2

∆USI of the chosen
thread

∆USI of all threads in the queue 1

Battery is enough

Battery is low

Initial Battery

Figure 2.4 The Properties of the USI functions

Figure 2.4 presents several curves for USI under different battery level conditions. It demon-

strates that a ∆T improvement for a thread that is already fast results in a smaller marginal

USI gain compared to the same ∆T gain for a thread that is slow. We assume the basic

scheduling policy to be FCFS (first come first serve) for simple mathematical analysis. Under

the FCFS policy, a thread at low position means that it has already waited for a long time.

So it does not need too much more time to be issued at the matched (better Energy-Delay

profile) computing core. But if we issue it immediately to an un-matched core (worse energy-

time profile), the compulsory longer execution delay may not be compensated for by the short

skipped waiting delay. The quadratic USI function determines that this decision will introduce

loss of USI. Since all the other threads get only a small benefit from this polymorphic switch

www.manaraa.com

21

action, the accumulated small amounts of ∆USI will not compensate the single ∆USI loss of

the chosen thread.

If we consider the problem at the application level, instead of at the thread level, then this

problem will be more complex. We assume that an application is composed of several threads,

and the dependences between threads form a directed acyclic graph (a thread control flow

graph). Then some threads are in the critical path of the thread CFG, and some are not. If we

change the morphism of a thread, whether the critical path of the corresponding application

will change or not is hard to predict. The real critical path of the application depends on the

current queue condition and position of each thread in the queues. The real critical path of

the application may change due to scheduling decisions made in the future. Since an accurate

mathematical method to predict the critical threads in the waiting queue is not available, we

can only rely on the numerical model to evaluate the influence of each polymorphic decision.

2.2.3 Procedure for Calculating Polymorphic Decision’s Influence

As the previous section states, if we adopt non-linear functions to model user satisfaction,

then choice of thread to switch morphism does affect the QoS (overall USI) of the system. A

procedure for calculating and predicting the effect of thread choice on the ∆USI of the current

applications in the waiting queue is presented here. In the Thread CFG, each thread node can

be labeled with tag indicating the worst case path length to a leaf node (end of application

computation). In order to perform application level prediction, the scheduler can utilize these

tags to predict the length of the left-over computation. We should note that these tags only

give a best-case schedule - assuming the best Energy-Delay profile morphism selection for all

the threads down-stream, and with zero waiting time in the queues. This is fairly inaccurate

because the final schedule of threads depends on scheduling decision made in the future. This

kind of tags-based approach can only partly reflect threads’ importance in the critical path of

corresponding application’s dependence graph. Another prediction could be based on history.

At the first step, we use the uni-morphism policy like FCFS to form the current queue, and

then we can predict the application’s critical path based on the current conditions. For each

thread (ith position in the active waiting Queue-2), we can calculate an expected turnaround

www.manaraa.com

22

path of this thread’s corresponding application:

Ti = Twait + Texecute + Trest =
i · ˆCPL2

n2 · P2
+
CPL2

P2
+ Tagi (2.13)

In Equation 2.13, the Trest is the predicted remaining path length (to a leaf) in the dependence

graph of this thread. If we enumerate expected turnaround/termination paths for all current

active threads of an application, we can find out the longest and the second longest termination

paths. We will record these paths and mark corresponding threads’ information. In the second

step, we calculate out each thread’s ∆T and corresponding ∆USI of the application when we

change this thread’s morphism:

∆USI = fusi(Tnew) − fusi(Tcritical) (2.14)

We can use the information obtained at Step 1 to roughly estimate whether the application’s

turnaround time will increase, decrease, or remain unchanged. If this thread is a critical thread

of the application, then the application’s Tnew is:
Tin = CPLi

P1
+ Tagi, when Tin > Tsecond longest

Tsecond longest, when Tin < Tsecond longest

(2.15)

The Tin is the corresponding application’s new expected turnaround/termination time. We

obtain it using a method similar to the one in Equation 2.4. If this thread is not a critical

thread, then Tnew’s expression is:
Tin = CPLi

P1
+ Tagi, when Tin > Tcritical

Tcritical, when Tin < Tcritical

(2.16)

The Tcritical is the recorded, longest turnaround time for the application. Equation 2.16 suggests

if the thread selected for morphism switch is not a critical thread, then we will only account for

the possible extra USI loss of the decision when the expected critical turnaround time of the

application is prolonged. In Step 3, we will calculate the influence of current decision on other

applications. We search all the threads behind the chosen one and check the tag space to see

if that thread is critical for its application. If so, then we will add the USI improvements or

losses to the total ∆USI of current choice. We will also check and calculate possible ∆USI of

www.manaraa.com

23

threads in Queue-1 using a method similar to Equation 2.6. The only difference is that here we

will account for the ∆USI of only really critical threads of some applications. The final step

is searching the ∆USI table to get the highest ∆USI improvement value. The corresponding

thread is the optimal choice for morphism switch. This procedure needs O(n2) time to calculate

overall ∆USI from thread switch from Queue-2 to Queue 1. Although O(n2) is high compared

to a general scheduling algorithm, we should notice that the scheduling algorithm’s speed is

not our primary concern in this paper.

2.2.4 The Greedy Scheduling Algorithm

Once we determine the optimal thread choice for morphism switch for polymorphic com-

puting, we should make a decision on whether we really issue the chosen thread to the less

suitable core or not. A simple heuristic could issue these threads to other core types as long as

there exist threads that could bring overall USI benefits. But this method does not consider

the battery term in the USI function. The ∆USI of a decision for morphism switch of threadi

can be expressed as:

∆USIi = ∆USIi1 + ∆USIi2 + ...+ ∆USIin (2.17)

=
Bc

Bref
· (
T 2
1o − T 2

1n

T 2
ref

+

T 2
2o − T 2

2n

T 2
ref

+ ...+
T 2
no − T 2

nn

T 2
ref

) (2.18)

In Equation 2.17, ∆USIin is the nth application’s marginal USI gain through morphism switch

for threadi; Tio is applicationi’s old turnaround time without the polymorphic computing, and

Tin is applicationi’s new turnaround time if we change Threadi’s morphism. If we simply set

a threshold that ∆USImax > 0, then the term Bc/Bref will not have any effect at all. So here

we set a threshold:

∆USImax > λ (2.19)

The λ is the constant threshold for ∆USI gain in changing threads’ morphism. When the

current battery level is high enough, we may find many threads would be qualified candidates

for morphism change. However when the current battery level is low, then the battery term

www.manaraa.com

24

will decrease the possibility that even the threads bearing maximum ∆USI will exceed the

threshold. This greedy algorithm targeting maximum overall USI for all applications is simple

enough for implementation.

www.manaraa.com

25

CHAPTER 3. EXPERIMENT

3.1 Simulation Methodology

3.1.1 The Simulation Platform based on SystemC

We build a simulator using SystemC [10] and Matlab to evaluate our model and theory of

polymorphic computing. SystemC provides complete solution for simulating concurrent events

along with all the C’s features for simulating the software’s serial behavior. Thus it is an ideal

tool for the evaluation of a polymorphic computing system. Figure 3.1 presents our model’s

structure. We use Matlab to generate the workloads that bear tags of ID, application ID,

Queue for CPU

Queue for ASIC

Queue for FPGA

A
ll th

read
s gen

erated
 b

y
m

atlab

CPU

ASIC

FPGA

Th
e p

o
rts to

th

e co
res

The Scheduler

Control Control

Figure 3.1 The Simulation Platform

dependence information, computing loads, other tags, and the most important, arrival time

stamp. There is a long queue for simulating the hard disk of the polymorphic computing

system. This queue just records the application generation in order and type. This allows for

www.manaraa.com

26

various scheduling and polymorphic systems to be simulated with identical workloads. There

are several fixed-size short queues for simulating the real scheduling windows. Each queue

holds a specific kind of threads that are matched to the corresponding kind of cores. When

a thread is generated by Matlab, all information will be stored in the first long queue (the

hard disk model). The scheduling windows will only read in the thread with recorded arrival

time stamp earlier than the current time stamp. This process emulates the user driven and

external asynchronous event driven thread generation and their handling by the scheduler.

When the thread generation rate is lower than the processing rate, the long queue will not

affect the short queues at all. However, when the thread transient generation rate is higher

than the processing rate of cores/queues, the scheduling windows are already overflowed, the

scheduling window will read in a new thread only after the computing system finishes processing

an old thread. The arrival time stamp of that new thread will be refreshed to current time

stamp, which simulates the user driven throttling - negative feedback loop. Different types of

computing cores are modeled as different count-down counters in this simulator. Each counter’s

rate which determines the computing speed and its corresponding power consumption are set

according to Chung’s paper [6]. The model of computing cores can be further expanded with

complex behavior like interrupt, morphism changes, communicating with other cores, and other

functions. The cores are connected with different scheduler with unified ports. The scheduler

collects the status of the system through these ports and makes proper decisions based on the

current conditions and the scheduling algorithm. The raw simulation results are also recorded

by the scheduler, and are analyzed by Matlab.

3.1.2 The Model of Applications and Threads

In this research, computing is abstracted as a collection of applications. Each application

in turn contains several threads. A thread is the minimum computing granularity mapped to

a core. We use threads Dependence Flow Graph (DFG) to model the relationship between

threads within one application. We assume that there is no dependency between applications.

One thread may depend on another thread due to many reasons like necessary communication,

data dependence, control dependence, etc. In the DFG all these relationships are abstracted

www.manaraa.com

27

as a unidirectional edge between two nodes. The direction of the edge reflects the compulsory

sequential order between two threads. Each node in the graph represents a thread. The

topology of the edges and nodes is determined by the software’s intrinsic structure. In the

simulation we use two kinds of topologies to model the real-life software: the Embarrassingly

Parallel Random (EPR) and the Random Tree(RT) [12]. Structure of these two topologies is

shown in Figure 3.2. The applications with embarrassingly parallel topology contain several

(a) EPR (b) Random Tree

= Type1, CPU
only

= Type2, Fit
FPGA

= Type3, ASIC
Best

Figure 3.2 The structure of EPR and RT

parallel branches. These can be executed in a multi-processors system efficiently. The image

processing program falls into this category. The tree structure is one of the classical topologies.

Many algorithms and applications, like search, graph traversal fall into this category [12]. One

key difference between these two topologies is that the EPR has an ending node while the

RT does not. We use a random model during thread generation. The corresponding tags

are also randomly generated. We generate different types of threads randomly with a pre-

designated ratio. One important task in this work is to veryfy Equations 2.2 and 2.9. These

www.manaraa.com

28

claim that a polymorphic computing platform’s working operating zone strongly depends on

the unbalance coefficient of different thread types. We adjust the random parameters in the

generation process to test that Equation 2.2 applies over all kinds of topologies. We also

evaluate our greedy polymorphic scheduling algorithm under various random parameters.

3.1.3 The Design of the Experiments

We have conducted two experiments to seek phenomenon that supports our theory and eval-

uate our proposed greedy algorithm presented in the previous sections. In the first experiment,

the major goal is to test our working operating zone theory and the constraints in Equation 2.9.

Three schedulers are evaluated in Experiment 1. All these three schedulers adopt the BFS as

the basic scheduling policy for uni-morphism queue. The Linux BFS scheduler is based on the

”virtual deadline first” policy. The ”virtual deadline” policy is in essence a hybrid of FCFS

and priority-based scheduling policy. In our simulation, we assign the threads a priority index

to help the scheduler calculate the virtual deadline of the thread. A thread which is on the

critical path of the application’s DFG will receive higher priority (and have an earlier virtual

deadline). The key difference between these three schedulers is their policy on polymorphic

computing. One scheduler is designed to achieve maximum throughput. This scheduler will

change the morphism of the thread at the FPGA queue head as long as its virtual deadline is

later than the thread at the CPU queue head. Another scheduler is designed to achieve the

maximum battery life. This scheduler will never change the morphism of threads, and achieve

the maximum energy efficiency. The third scheduler will apply the constraint of Equation 2.9 to

decide on polymorphic morphism switch. When different queues’ length satisfy Equation 2.9,

the third scheduler would change the FPGA queue head thread’s morphism.

Experiment 2 is designed to evaluate a greedy algorithm to achieve maximum overall USI for

all applications proposed in Section 2.2. Three other schedulers for polymorphic computing are

evaluated in this experiment. The uni-morphism scheduling policies of these three schedulers

are slightly different. Equation 2.12 indicates that a thread with longer turnaround time (high

T) would suffer higher overall ∆USI punishment compared to a thread with shorter time with

www.manaraa.com

29

the same time penalty ∆T . Here we give the threads with higher predicted turnaround time

higher priority in the basic uni-morphism scheduling policy. The first scheduler in Experiment

2 is designed to achieve the minimum overall turnaround time. This scheduler will change the

morphism of threads in Queue-2 as long as it can foresee overall turnaround time improvements.

The second scheduler in Experiment 2 is similar to the scheduler in Experiment 1 designed to

achieve maximum energy efficiency. The third scheduler adopts the proposed greedy algorithm

to achieve overall USI improvements.

3.2 The Simulation Results

3.2.1 Simulating Results for Verifying the Model

In Experiment 1, a simple multi-core model was adopted: there is only 1 CPU core and

1 FPGA core. Under this model, the degree of parallelism of the test-bench won’t affect the

simulation results much, since there is only one core for execution of each type of threads.

We will adopt the same model in Experiment 2. We will extend our simulator with complex

cores organization in our future work. We change the unbalance coefficients of CPU threads

and FPGA threads to simulate the fluctuations in incoming workloads. Seven scenarios of

combination of unbalance coefficients were tested: 0.2(CPU):1.8(FPGA); 0.4 : 1.6; 0.6 : 1.4;

0.8 : 1.2; 1.0 : 1.0, 0.75 : 0.75; 0.5 : 0.5. Under the ratio of 1.0 : 1.0, the incoming workloads are

balanced with the corresponding core’s processing ability . We test both kinds of application

topologies mentioned in section 3.1.2. In the rest of this paper, we will use the abbreviation ENG

to refer to the scheduler designed to achieve maximum energy efficiency; the abbreviation THR

to refer to the scheduler designed to achieve the maximum throughput; and the abbreviation

DEL to refer to the scheduler designed to achieve the minimum overall turnaround time. The

original data of Experiment-1 are given at Table 3.1,3.2,3.3, 3.4. In these tables, all data

are counted in unit of time of the simulator. The Table 3.1, 3.2 present the battery life

of the systems using three different schedulers. The workloads is modeled in EPR and RT

topologies respectively. And the Table 3.3, 3.4 present the average turnaround time of all given

applications (in EPR and RT topologies) under three different schedulers.

www.manaraa.com

30

Table 3.1 The Battery Life in Experiment 1(EPR Topology)

Ratios THR DEL ENG

0.2:1.8 76150 126700 175550

0.4:1.6 76270 110100 142220

0.6:1.4 76770 96110 115300

0.8:1.2 78950 84270 91800

1.0:1.0 81740 78770 79840

0.75:0.75 81520 79000 80130

0.5:0.5 81590 78620 79280

Table 3.2 The Battery Life in Experiment 1(RT Topology)

Ratios THR DEL ENG

0.2:1.8 76330 99500 168360

0.4:1.6 76330 93280 139670

0.6:1.4 76850 86970 114600

0.8:1.2 78860 82090 94770

1.0:1.0 82120 80030 84570

0.75:0.75 82100 80620 85110

0.5:0.5 82320 80440 84780

In the rest of this paper, Figures 3.3, 3.4, 3.5, 3.6, 3.7 - (a) presents the results under

the test bench in which the applications’ DFG is the EPR topology and igures 3.3, 3.4, 3.5,

3.6, 3.7 - (b) presents the results under the test bench in which the applications’ DFG is the

RT topology. Since the unit of time in simulator does not contain any physical meaning, we

normalize the results to make the comparison more clear. In the figure, all the results of the

battery life and turnaround time of applications of THR and DEL schedulers are normalized

to the simulation results of the ENG scheduler under the same scenario of parameters setting.

Table 3.3 The Average Turnaround Time in Experiment 1(EPR Topology)

Ratios THR DEL ENG

0.2:1.8 180.6562 198.4825 185.8586

0.4:1.6 206.0369 204.4091 193.5645

0.6:1.4 262.9142 210.9041 204.6841

0.8:1.2 344.7477 225.6985 221.5169

1.0:1.0 404.4615 291.3241 291.0529

0.75:0.75 395.21 292.978 292.9172

0.5:0.5 404.9379 292.3849 292.6922

www.manaraa.com

31

Table 3.4 The Average Turnaround Time in Experiment 1(RT Topology)

Ratios THR DEL ENG

0.2:1.8 172.802 197.0531 178.4907

0.4:1.6 193.543 204.9054 188.5864

0.6:1.4 236.6603 220.7572 209.6983

0.8:1.2 306.2964 245.4203 237.4565

1.0:1.0 400.8124 305.5234 305.9304

0.75:0.75 391.3132 305.1419 306.2073

0.5:0.5 400.2689 307.4564 308.898

From Figure 3.3, we note that the battery life difference between the THR/ENG and

DEL/ENG are linear in the unbalance coefficients’ difference. When the incoming threads

flows are very uneven, scheduling results of DEL and ENG have great differences. These two

schedulers define the boundary of the effective operating zone of the scheduler on polymorphic

computing. When the incoming threads flows are well balanced, the polymorphic scheduler

cannot generate result any different than the traditional scheduler. This phenomenon supports

the theory that the polymorphic system’s efficient operating zone is linear in the difference of

incoming rates between different types of threads. The simulation results of the last three sce-

narios indicate that when the incoming threads are well balanced, the polymorphic computing

does not contribute at all.

Figure 3.4 presents the overall turnaround time of different schedulers under various ra-

tios of incoming thread types. We should note that the THR scheduler suffers great overall

delay slowdown when the incoming rate are balanced. The average turnaround time of the

applications in DEL scheduler is always shorter than the ENG scheduler. Since the scheduler

DEL adopts the Equation 2.9 as the critical threshold for decision on morphism changing, the

comparison supports the Equation 2.9. The comparison of the average turnaround time of

THR and ENG scheduler is also contradicts the conventional opinion that maximum system

throughput would bring minimum overall turnaround time of applications [25], [21]. Besides,

the linear relationship between the overall turnaround time improvements of DEL scheduler

compared to ENG scheduler and the imbalanced ratio also supports our theory about effective

operating zone of polymorphic computing system.

www.manaraa.com

32

0

0.2

0.4

0.6

0.8

1

1.2

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.75:0.75 0.5:0.5

THR

DEL

ENG

0

0.2

0.4

0.6

0.8

1

1.2

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.75:0.75 0.5:0.5

THR

DEL

ENG

(a) EPR

(b) RT

Figure 3.3 The Normalized Battery Life in Experiment 1

3.2.2 Evaluation of the Greedy Algorithm

In Experiment 2, we adopt test method similar to Experiment 1 to evaluate the greedy

algorithm proposed in section 2.2. In the rest of this paper, we will use the abbreviation MEE

to refer to the scheduler designed to achieve maximum energy efficiency; the abbreviation

MT to refer to the scheduler designed to achieve the minimum overall turnaround time of

applications; and the abbreviation GRE to refer to the greedy scheduler designed to achieve

the maximum USI. We will first present the performance of these three schedulers using the

traditional metrics like the average turnaround time of applications. We will then measure the

performance of the schedulers using our proposed metric, the average USI of the applications.

In order to calculate the average USI in a fair way, we assume that all schedulers are given

the identical set of applications, and the scheduler that fail to finish any applications due to

insufficient battery life will receive an individual 0 score of USI for those applications. We

www.manaraa.com

33

0

0.5

1

1.5

2

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.75:0.75 0.5:0.5

THR

DEL

ENG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.75:0.75 0.5:0.5

THR

DEL

ENG

(a) EPR

(b) RT

Figure 3.4 The Normalized Turnaround Time in Experiment 1

also set a threshold for the turnaround time of the applications similar to what iOS does

[1]. If an application fails to respond within 5ms in iOS, it is terminated. We count all the

applications that fail to meet the deadline. We will use these counts as another measurement of

the scheduler’s performance. A user should not be made unhappy/dis-satisfied too frequently.

The raw data is given at the Table 3.5, 3.6, 3.7, 3.8, 3.9, 3.10. The Table 3.5, 3.6 present the

average turnaround time of given applications under different scheduler. The Table 3.7, 3.8

present the average USI of given applications, and the Table 3.9, 3.10 present the counts of

applications that mismatch the settled deadline.

We adopt the approach that similar to Experiment 1 to deal the raw data, normalization,

to make the trend more clear. All the results of the average turnaround time of applications of

MT and GRE schedulers are normalized to the simulation results of the MEE scheduler under

the same scenario of parameters setting. Figure 3.5 presents the normalized average turnaround

www.manaraa.com

34

Table 3.5 The Average Turnaround Time of Applications in Experiment 2(EPR Topology)

Ratios MT GRE MEE

0.2:1.8 549.5789 658.0209 694.3015

0.4:1.6 582.5089 632.8593 676.2429

0.6:1.4 532.2711 573.8028 584.8117

0.8:1.2 522.827 528.2496 535.6558

1.0:1.0 554.1447 535.3327 534.489

0.5:0.5 426.03 414.0762 413.3046

Table 3.6 The Average Turnaround Time of Applications in Experiment 2 (RT Topology)

Ratios MT GRE MEE

0.2:1.8 443.5982 567.0232 595.8375

0.4:1.6 450.2102 526.7945 546.7762

0.6:1.4 405.7101 448.0000 470.2008

0.8:1.2 397.3284 409.9574 414.0548

1.0:1.0 428.475 412.5551 411.1509

0.5:0.5 356.8667 344.9772 344.5264

time of the finished applications. The MT scheduler achieves significant reduction in average

turnaround time compared with the MEE and GRE schedulers when the incoming ratio is not

balanced. It may prolong the application’s turnaround time when the ratio is balanced. The

average turnaround time of GRE scheduler is always shorter than that of MEE scheduler. The

improvement of GRE scheduler is not as significant as the MT scheduler.

Figure 3.6 presents the average USI of three schedulers. The USI is calculated according

to Equation 2.12 and averaged over all applications. The scheduler with higher average USI

is better. We should note that under this metric, the MT scheduler is much worse than the

other two. Main reason is that the MT scheduler sacrifices too much energy to achieve the

Table 3.7 The Average USI in Experiment 2(EPR Topology)

Ratios MT GRE MEE

0.2:1.8 0.450885456 0.700596497 0.738562951

0.4:1.6 0.505019605 0.715592355 0.742620099

0.6:1.4 0.616740438 0.791685693 0.806407153

0.8:1.2 0.723480895 0.82474148 0.832233046

1.0:1.0 0.787936273 0.832280561 0.832455311

0.5:0.5 0.929951021 0.999621917 0.907435271

www.manaraa.com

35

Table 3.8 The Average USI in Experiment 2(RT Topology)

Ratios MT GRE MEE

0.2:1.8 0.486470268 0.779889891 0.825682061

0.4:1.6 0.554277278 0.797297809 0.843242445

0.6:1.4 0.679365574 0.856055055 0.885508743

0.8:1.2 0.79227343 0.901201932 0.909910467

1.0:1.0 0.857810943 0.907495472 0.915477358

0.5:0.5 0.877652075 0.935950566 0.943640755

Table 3.9 The Applications Counts that Overdue in Experiment 2(EPR Topology)

Ratios MT GRE MEE

0.2:1.8 0 26 119

0.4:1.6 10 12 68

0.6:1.4 13 10 18

0.8:1.2 7 6 13

1.0:1.0 5 2 2

0.5:0.5 0 0 0

significant turnaround time improvement shown in Figure 3.5. Many applications cannot finish

under the given battery volume budget if we using the MT scheduler. The GRE scheduler also

sacrifices energy to lower the average turnaround time, but it utilizes the greedy algorithm to

guarantee the QoS, so its average USI is very close to that of the MEE scheduler. We have to

admit that current definition of USI does not favor the GRE scheduler too much. One possible

reason is that current definition weight the finished application too heavy. Any sacrificing of

energy to improve the overall turnaround time will lead to loss of application and great loss of

USI. So the traditional fixed mapping scheduler(MEE scheduler) is over-rated under current

USI definition. Modifying the definition of USI and solving this problem is one of our future

Table 3.10 The Applications Counts that Overdue in Experiment 2(RT Topology)

Ratios MT GRE MEE

0.2:1.8 2 34 71

0.4:1.6 0 5 42

0.6:1.4 0 0 4

0.8:1.2 0 0 0

1.0:1.0 0 0 0

0.5:0.5 0 0 0

www.manaraa.com

36

(a) EPR

(b) RT

0

0.5

1

1.5

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.5:0.5

MT

GRE

MEE

0

0.5

1

1.5

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.5:0.5

MT

GRE

MEE

Figure 3.5 The Normalized Turnaround Time in Experiment 2

research direction. Figure 3.7 presents the applications counts whose turnaround time exceeds

the threshold.

The count of MEE scheduler is significantly higher than the other two schedulers. This

means its service is bad from the user satisfaction point of view. The counts of MT and GRE

schedulers are close to each other. From the comprehensive point of view, the GRE scheduler

achieves the compromised trade-off between the battery life and average turnaround time.

www.manaraa.com

37

0

0.2

0.4

0.6

0.8

1

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.5:0.5

MT

GRE

MEE

0

0.2

0.4

0.6

0.8

1

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.5:0.5

MT

GRE

MEE

(a) EPR

(b) RT

Figure 3.6 The Average USI for all given applications

www.manaraa.com

38

(a) EPR

(b) RT

0

50

100

150

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.5:0.5

MT

GRE

MEE

0

20

40

60

80

0.2:1.8 0.4:1.6 0.6:1.4 0.8:1.2 1.0:1.0 0.5:0.5

MT

GRE

MEE

Figure 3.7 The Counts of Overdue Applications

www.manaraa.com

39

CHAPTER 4. CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

This paper proposes polymorphic computing system which consists of architecturally diverse

cores - CPU, GPU, FPGA, and ASIC. Polymorphic software architecture in which threads are

designed for multiple core architectures exploits the best features of a polymorphic computing

system. This paper develops various theoretical models to understand when it might be bene-

ficial to use polymorphic software on a polymorphic system. Many of these theoretical models

are parameterized by empirical parameters. We built a simulation environment to emulate

a polymorphic system along a broad choice of system parameters to validate our theoretical

models.

We start with a simple queuing model to analyze the polymorphic computing system. We

analyze the design space for a polymorphic system and present a theoretical analysis of the

viable working operating zone of this system. The USI based scheduling is also covered in

this analysis. A novel greedy scheduler designed to achieve maximum USI is also proposed. A

SystemC based simulator for polymorphic computing is built. The simulation results validate

our theory. A greedy scheduling algorithm is also evaluated in this simulator. The scheduler

performs the trade-off between speed and energy. Our work indicates that the USI-based

polymorphic scheduling on heterogeneous system is a good software solution to match future

embedded system’s requirements.

4.2 Future Work

Various interesting topics are also raised in this work, like, what will happen if we extend the

model of heterogeneous cores with more types of cores like GPU, ASIC? Does the polymorphic

www.manaraa.com

40

computing improve the system potential parallel processing ability under the massive multi-core

system? Will the current theory and conclusions change, if we adopt the asymmetric thread-

matching model? What new will occur if we consider the reconfigurable cores’ reconfiguring

time and energy cost? We will focus on discussing the last two questions in the rest of this

section.

4.2.1 The asymmetric thread matching model

Among the basic assumptions of the model in this thesis, several are made for simplicity,

and they are far away from the real environments. One is that the FPGA is better than

CPU in both processing time and energy efficiency at a fixed rate for all the proper kinds of

threads. In the Chung’s paper [6], a general rate is given base on statistic average. We can

see that the ratios of speed and energy efficiency between the CPU, FPGA, GPU and AISC

are quite different for various kinds of testbench. If we introduce this feature to our model,

then we would observe that CPU may gain the “comparative advantage” over the FPGA even

it is inferior to FPGA for all kinds of threads. We borrow the term “comparative advantage”

from the economic science where it is claimed that a developing country has the advantage of

producing products in a higher cost than the developed country because the developed country

are too busy to produce such products. Let’s assume there are two subtypes of Type-2 threads,

subtypeA and subtypeB. The FPGA will gain 10 times of speed and energy efficiency than

CPU for subtypeA while gain only 2 times for subtypeB. Then there would be scenarios that

FPGA cores are too busy for processing subtypeA threads so the scheduler have to give some

and only some subtypeB threads to CPU because of the “comparative advantage” of CPU cores

under such conditions. We can also borrow some well established theory from economic science

to help analysing the new feature. But combining the “comparative advantage” to the USI

functions is quite hard and we are still working on that. Numerical calculation in scheduler can

not find this fundamental feature of threads. Another major obstacle is lacking statistic data

to model such scenarios in simulator. Simulation with arbitrary setting is less persuasive. We

should notice that the working zone of polymorphic computing will be enlarger if we consider

the “comparative advantage” of the CPU.

www.manaraa.com

41

After introducing the asymmetric mapping model, more complex model is possible. Previ-

ously, we assume that there are some threads that are unavailable for running on FPGA. This

is a necessary simplified restriction under the symmetric thread-mapping model. If the FPGA

can outperform the CPU for all the tasks at a fixed rate, then we won’t put any CPU cores on

the chip when designing the hardware of SOC chips. However, under the asymmetric mapping

model, We could adopt the DeHon’s statistic results [9] and enabling the type 1 threads to be

mapped on FPGA. But here we will assert that FPGA will take more time and consume more

energy for the type 1 threads. Then normally, we won’t map type 1 threads to FPGA unless

the CPU is too busy and FPGA cores are free. The Figure 4.1 (a) presents the asymmetric

flow mapping model, and the Figure 4.1 (b) presents one numerical cost table as a case of this

assumption. In the table the “T” means the time cost and “E” means the energy cost. We can

extend this table with arbitrary number of processing cores and types of threads.

GCPU:
P1

a

Type1
incoming
rate: G1 S

FPGA:
P2

cS

Type2
incoming
rate: G2

b

d

Flow a
T: 4 units
E: 2 units

Flow d
T: 10 units
E: 6 units

Flow b
T: 15 units
E: 9 units

Flow c
T: 5 units
E: 1 units

GCPU FPGA

Ty
p

e
1

Ty
p

e
2

(a) (b)

Figure 4.1 The Asymmetric Flow Mapping Model

Obviously, theoretical analysing or experimental results for such model are much harder

to get compared with previous simplified models. Although modifying our current simulation

model to adapt the asymmetric mapping assumption is pretty easy, we haven’t conduct a

experiment on such new model mainly due to lack of sound parameters setting. Intuitively,

www.manaraa.com

42

adding this assumption will also enlarge the working zone of polymorphic computing, that

extra energy and speed may be harvested by polymorphic computing even when CPU is too

busy. Generally speaking, after considering the asymmetric mapping assumption which is more

close to real environments, we can give the polymorphic computing system a further positive

expectation due to the larger working zone .

4.2.2 Adding the cost model of reconfiguring

One interesting component in the polymorphic computing system is the FPGA, the dynamic

reconfigurable hardware. In the polymorphic computing, we assume that the scheduler can

change the configuring bits of FPGA tiles anytime. This function involves extra consumption

of time and energy. In the final numerical results of chung’s paper, the reconfiguring cost is

counted in, but the details of reconfiguring frequency is not revealed in that paper. Obviously,

the actual cost is linear to the real shift frequency decided by the scheduler. Then the scheduler’s

decision will change the time and energy consumption of the given workloads. We will illustrate

the importance of the scheduler’s decision on a extreme imaginary case stated below. We

assume that there are two subtypes(subtypeA and subtypeB) of Type-2 threads in the original

symmetric flow-mapping model, and we need to reconfigure the whole FPGA core every time

that the configuring shifts from subtypeA to subtypeB or reversely. Here we assume that there

is only one FPGA core in the system, and the incoming threads flow is just two subtypes

of Type-2 threads alternatively. If we mapping all the incoming Type-2 threads to the only

FPGA core, then we have to reconfigure the FPGA for every incoming thread. Let’s assume

the subtypeB threads are not on the critical path of the applications’ DFG; and they are pretty

small, that mapping them to CPU core won’t waste too much energy. If the scheduler map

all the subtypeB threads to CPU cores, then we can save all the reconfiguring time and energy

cost. There may be chances that the saved reconfiguring energy and delay are lower than the

extra energy and delay of subtypeB threads on the CPU. After adding the reconfiguring cost,

all the formulas for calculating ∆USI in previous section will change. Definitely, the behavior

of the scheduler will change due to this extra model. This problem will more complex if we add

the multi-core model to the FPGA clusters. Previously, the scheduler can choose any vacant

www.manaraa.com

43

FPGA to the next chosen Type-2 threads; now waiting longer for another configured tile may

be a better decision for the next chosen threads if we consider the reconfiguring cost. Generally,

we believe that adding the cost of reconfiguring will enlarge the working zone of polymorphic

computing, and adding more interesting questions to the problem of scheduling on polymorphic

computing system.

www.manaraa.com

44

BIBLIOGRAPHY

[1] Apple, I. (June 2010). ios application programming guide.

[2] Borkar, S. (2007). Thousand core chips: a technology perspective. pages 746–749.

[3] Bower, F. A., Sorin, D. J., and Cox, L. P. (2008). The impact of dynamically heterogeneous

multicore processors on thread scheduling. IEEE Micro, 28:17–25.

[4] Cardoso, J., Diniz, P., and Weinhardt, M. (2010). Compiling for reconfigurable computing:

A survey. ACM Computing Surveys (CSUR), 42(4):13.

[5] Cassidy, A. S. and Andreou, A. G. (2012). Beyond amdahl’s law: An objective function that

links multiprocessor performance gains to delay and energy. Computers, IEEE Transactions

on, 61(8):1110 –1126.

[6] Chung, E. S., Milder, P. A., Hoe, J. C., and Mai, K. (2010). Single-chip heterogeneous

computing: Does the future include custom logic, fpgas, and gpgpus? pages 225–236.

[7] Curreri, J., Koehler, S., Holland, B., and George, A. (2008). Performance analysis with

high-level languages for high-performance reconfigurable computing. pages 23 –30.

[8] Dally, W., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R., Parikh, V., Park, J., and

Sheffield, D. (2008). Efficient embedded computing. Computer, 41(7):27 –32.

[9] DeHon, A. (2000). The density advantage of configurable computing. Computer, 33(4):41

–49.

[10] Ghosh, A., Tjiang, S., and Chandra, R. (2001). System modeling with systemc. pages 18

–20.

www.manaraa.com

45

[11] Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B. C., Richardson,

S., Kozyrakis, C., and Horowitz, M. (2010). Understanding sources of inefficiency in general-

purpose chips. pages 37–47.

[12] He, Y., Liu, J., and Sun, H. (2011). Scheduling functionally heterogeneous systems with

utilization balancing. pages 1187 –1198.

[13] Hill, M. and Marty, M. (2008). Amdahl’s law in the multicore era. Computer, 41(7):33–38.

[14] Krishnamurthy, V., Ponpandi, S., and Tyagi, A. (2011). A novel thread scheduler design

for polymorphic embedded systems. pages 75 –84.

[15] Ma, N., Lu, Z., Pang, Z., and Zheng, L. (2010). System-level exploration of mesh-based

noc architectures for multimedia applications. pages 99 –104.

[16] Merritt, R. (2010). Smartphones can replace pcs. EE Times, 41.

[17] Moncrieff, D., Overill, R., and Wilson, S. (1996). Heterogeneous computing machines and

amdahl’s law. Parallel Computing, 22(3):407–413.

[18] Pal, S., Chatterjee, M., and Das, S. K. (2005). A two-level resource management scheme

in wireless networks based on user-satisfaction. SIGMOBILE Mob. Comput. Commun. Rev.,

9(4):4–14.

[19] Pande, P., Grecu, C., Ivanov, A., Saleh, R., and De Micheli, G. (2005). Design, synthesis,

and test of networks on chips. Design Test of Computers, IEEE, 22(5):404 – 413.

[20] Paul, J. and Meyer, B. (2007). Amdahls law revisited for single chip systems. International

Journal of Parallel Programming, 35(2):101–123.

[21] Ramarao, P. and Tyagi, A. (2003). An adiabatic framework for a low energy mu;-

architecture and compiler. pages 65 – 72.

[22] Shye, A., Ozisikyilmaz, B., Mallik, A., Memik, G., Dinda, P., Dick, R., and Choudhary, A.

(2008). Learning and leveraging the relationship between architecture-level measurements

and individual user satisfaction. 36(3):427–438.

www.manaraa.com

46

[23] Stamoulis, G., Kalopsikakis, D., and Kyrikoglou, A. (1999). Efficient agent-based negoti-

ation for telecommunications services. 3:1989–1996.

[24] Taylor Groves, Jeff Knockel, E. S. (2009). Bfs vs. cfs - scheduler comparison.

[25] Tyagi, A. (1992). A principle of least computational action (preliminary version). pages

262 –266.

[26] Xiao, M., Shroff, N., and Chong, E. (2001). Utility-based power control in cellular wireless

systems. 1:412–421.

	2012
	Addressing the feasibility of USI-based threads scheduler on polymorphic computing system
	Zhang Zhang
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Motivation
	1.2 Background
	1.2.1 Heterogeneous Computing and Polymorphic Computing
	1.2.2 The USI-based Scheduling on Polymorphic Architecture

	1.3 Related Work
	1.3.1 The Extended Amdahl's Law
	1.3.2 Performance Model of Heterogeneous CMP
	1.3.3 Modeling the User Satisfaction Index

	1.4 Organization of this Thesis

	2. THEORETICAL ANALYSIS
	2.1 A Theoretical Model
	2.1.1 Definition of Threads' Type
	2.1.2 The Model of Flow-Mapping
	2.1.3 Different Operating Zones
	2.1.4 The Queueing Model for Simulation

	2.2 USI-based Scheduling
	2.2.1 The Proper USI-function
	2.2.2 The Influence of Non-linear Function
	2.2.3 Procedure for Calculating Polymorphic Decision's Influence
	2.2.4 The Greedy Scheduling Algorithm

	3. EXPERIMENT
	3.1 Simulation Methodology
	3.1.1 The Simulation Platform based on SystemC
	3.1.2 The Model of Applications and Threads
	3.1.3 The Design of the Experiments

	3.2 The Simulation Results
	3.2.1 Simulating Results for Verifying the Model
	3.2.2 Evaluation of the Greedy Algorithm

	4. CONCLUSIONS AND FUTURE WORK
	4.1 Conclusions
	4.2 Future Work
	4.2.1 The asymmetric thread matching model
	4.2.2 Adding the cost model of reconfiguring

	BIBLIOGRAPHY

